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Abstract— Gaze-based intention detection has been explored
for robotic-assisted neuro-rehabilitation in recent years. As eye
movements often precede hand movements, robotic devices can
use gaze information to augment the detection of movement
intention in upper-limb rehabilitation. However, due to the
likely practical drawbacks of using head-mounted eye trackers
and the limited generalisability of the algorithms, gaze-informed
approaches have not yet been used in clinical practice.

This paper introduces a preliminary model for a gaze-
informed movement intention that separates the intention
spatial component obtained from the gaze from the time
component obtained from movement. We leverage the latter
to isolate the relevant gaze information happening just before
the movement initiation. We evaluated our approach with six
healthy individuals using an experimental setup that employed
a screen-mounted eye-tracker. The results showed a prediction
accuracy of 60% and 73% for an arbitrary target choice and
an imposed target choice, respectively.

From these findings, we expect that the model could 1)
generalise better to individuals with movement impairment (by
not considering movement direction), 2) allow a generalisation
to more complex, multi-stage actions including several sub-
movements, and 3) facilitate a more natural human-robot
interactions and empower patients with the agency to decide
movement onset. Overall, the paper demonstrates the potential
for using gaze-movement model and the use of screen-based
eye trackers for robot-assisted upper-limb rehabilitation.

I. INTRODUCTION

Intensive therapy using robotic devices for motor recovery

from neurological injuries has been explored for decades [1],

[2], [3], [4]. Such robotic devices assist patients with their at-

tempts to perform repeated goal-oriented motor actions. Var-

ious forms of interaction methods have also been explored,

including patients interacting with on-screen objects [3].

Simultaneously, the absence of spatio-temporal informa-

tion about the subject’s movement (where the person is

trying to move to and when they move) drastically limits

the potential for assistance and/or correction from a robotic

device. The choice of the robotic system is thus often left to

either movement-agnostic assistance (e.g. deweighting, con-

stant damping/spring) or to impose the timing and movement

path (e.g. passive movements in position control, see [5] for

a complete review) and thus lose the user intention.

To address this issue, researchers have proposed to use

gaze tracking to predict motion [1], [2], [6], [7], [8], [9],

afforded by the increasing availability and cost of both com-

mercial on-screen and head-mounted eye trackers. Although
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these works demonstrate the potential for gaze input in

the context of rehabilitation, it remains limited as it relies

on an explicit or fixed dwell time [2], [10] (fixed time

limit is usually given to a user to fixate on a target before

movement onset), explicit visual feedback [7] or probability

threshold [8] for target selection. In this exact rehabilitation

context, Novak et al. [2] showed that the combination of

gaze and hand movement information (position) provides the

best movement prediction at onset than many other forms of

human sensing (e.g. EEG, EMG, EOG). Nevertheless, their

approach leverages automatic feature extraction and fusion.

This has the advantage to allow a fair comparison of multiple

techniques but might not generalise well in practice. Indeed,

it is impossible to define how much the system will rely on

each modality, i.e. gaze and/or movement. Thus, the method

would likely fail to generalise to people with disrupted

movement execution unless an ad-hoc training of the system

is performed for each user, which then appears not practical.

Novak et al. extended this work, using a screen mounted eye-

tracker and decoupling the onset detection (timing) from the

spatial detection (target) [11]. Their method, which uses in-

game probabilities on top of gaze information, lead to 80%

prediction accuracy when evaluated with 12 healthy subjects

but requires one full second of data.

Our long-term goal is to develop a Movement Intention

Model that relies on a hand-eye coordination model by

separating the spatial components (obtained from gaze) and

the temporal component (obtained from movement initiation)

and address the limitations mentioned above. The proposed

approach allows the interaction to be dwell-time independent

and, therefore, potentially more natural. Further, we believe

that both gaze and movement data will be noisy in the context

of rehabilitation. Hence, a model that uses gaze input before

movement initiation and gaze and movement data after (and

also during), will result in robust target selection and refined

movement. We also propose treating the gaze information

in a probabilistic manner that attempts to reflect subjects’

attention to increase its reliability.

This paper presents the first steps in the model develop-

ment process, in which we evaluate the combination of gaze

and movement initiation information to best detect the user

intention in reaching actions when assisted by a robot. The

explicit separation of spatial and temporal information also

allows translating the approach to subjects with movement

disorders by not assuming the movement initiation direction.

A recent paper [6] presents a similar method, but fusing gaze

and EMG after movement initiation while we are interested

in the effectiveness of gaze before movement onset.



We evaluated our approach with six healthy individuals

and achieved a prediction accuracy of 60% and 73% for

an arbitrary target choice and an imposed target choice,

respectively. From these findings, we expect that the model

could 1) generalise better to individuals with movement

impairment (by not considering movement direction), 2)

allow a generalisation to more complex, multi-stage actions

including several sub-movements, and 3) facilitate a more

natural human-robot interactions and empower patients with

the agency to decide movement onset.

II. MOVEMENT INTENTION MODEL

The proposed model aims to provide a target prediction via

gaze at the movement onset, allowing the robotic assistant to

quickly turn on movement assistance and/or movement cor-

rection while leaving the subject’s entire action intention. The

method assumes that the subject can initiate the movement,

but this initiation could be assisted by a movement agnostic

support if required, such as a gravity compensation.

We adopt a simple gaze model from existing work on gaze-

based intention recognition [12]. This model aims to capture

the subject’s interest towards a given target (through their

visual attention) before movement onset by integrating both

saccades towards each target and time spent within them.

Following this model, we define fs
i
, the fixation score for

an on-screen target i as a weighted measure between fixation

duration and fixation count:

fs
i
= λ · durationi + (1− λ) · counti (1)

where durationi is the total fixation duration on target i,

counti is the number of times a user fixates on i, and

λ ∈ [0, 1] is the relative weight given to the fixation duration

over fixation count. Because the duration and counts are

in different units (time and count, respectively), durationi

will likely be much higher than counti. In practice, we

have defined counti as the number of times i is looked

at multiplied by the fixation threshold (200ms), so the two

variables are on the same ‘scale’. The duration and counts

represent two ways of capturing a person’s interest in i; the

longer a person looks at i and the more number of times the

person looks at i, the more the person is interested in i.

The fixation score approach to intention recognition re-

quires the user to search for the target of interest actively.

In such scenarios, the gaze is actively used by a person to

determine the target to reach. The intention to go towards

a specific target could be self-driven or through external

stimuli. When self-driven, the user searches the prospective

targets, decides by himself/herself the target to reach (forms

the intention to reach a specific target), and then initiates

the movement. The user could form the intention to reach

towards a target with or without searching — they can

randomly pick a target even before movement. Alternatively,

the intention to move towards a target could be acquired by

external stimuli, for example, someone telling the person to

search for a specific target. Here, the user has to actively

search for the target of interest; therefore, the gaze is likely

to be more constrained. For this paper, we aim to understand

how the fixation based intention recognition model works

under these two scenarios; self-driven (free to choose target)

and external stimuli (constrained to specific targets).

Our work concentrates on target prediction before the

movement has started (not after) and to what extent we

can make the on-screen target selection implicit for more

natural interaction. That is, we do not rely on an imposed

dwell time or visual feedback. We, however, rely on the

user movement initiation as sensed by the robotic device.

Movement initiation is defined as the 400ms before the hand

movement reaches a velocity of 0.05m.s−1. This duration of

interest of di = 400ms is selected to ensure it encompasses

the last fixation present before movement onset [13] and the

velocity threshold is set arbitrarily to a low value to ensure

that it is met early in the movement and so is achievable

even by patients with very little voluntary motion. We denote

to the movement onset time when the velocity threshold is

reached. The fixation score fs
i

is thus calculated over the

temporal window: [to − di, to]. The target with the highest

score is selected as the prediction.

III. EXPERIMENTAL VALIDATION

We performed a preliminary experimental validation to

investigate the reliability of our proposed approach.

A. Methodology

1) Subjects: We recruited six naive subjects with no

history of neurological injury to participate in the experiment.

All procedures received approval from The University of

Melbourne HEAG (Ethics ID: #1749444.3).

2) Setup: Figure 1 shows our experimental setup. Subjects

were seated in front of a touch screen computer with a

Tobii 4C eye-tracker attached to the bottom, and their wrist

strapped to the EMU robotic device. The EMU is a 3D

manipulandum able to generate a force in the three directions

to provide assistance, correction or resistance to the subjects’

movement. In this experiment, the EMU was used as a

position sensor, configured in a transparent mode (i.e. to not

produce any interaction force), during the reaching move-

ments and to enforce a return to the home reaching position

in-between each reaching action. The setup is similar to the

setup used in clinical conditions with the EMU device [3]

with simply the addition of the eye-tracker device attached

to the monitor. Gaze information (gaze point on the screen,

measured by the eye-tracker) and movement position (wrist

position and velocity measured by the robotic device) were

recorded synchronously at 90Hz. Our targets were separated

from each other by more than 5cm.

3) Task: After setup, the subjects were presented with

three targets on the touch screen in front of them. Subjects

were asked to perform 40 reaching movements each. For the

first 20 movements, the subjects were presented with three

identical targets and left free to reach towards any of them

(Free choice condition). This setup for the 20 movements

was inspired by other works, such as [2], [6]. For the 20 last

movements, subjects were constrained to reach one specific



Fig. 1. Experimental setup showing (A) the touch screen with user interface
(in Free choice mode); (B) the Tobii eye-tracker and (C) the robot cuff with
the subject in starting posture.

Free choice Constrained choice
30

40

50

60

70

80

90

100

S
u
c
c
e
s
s
fu

ll 
p
re

d
ic

ti
o
n
 (

%
)

Fig. 2. Successful prediction rate for all subjects and both conditions: Free

choice (first 20 targets) and Constrained choice (last 20 targets).

target among three (one depicting a rabbit among a dog

and a cat) (Constrained choice condition). Timing of the

reaching—initiation and speed—was left free to the subjects.

4) Data analysis: The gaze model (Eq. 1) was applied

on gaze position, and hand velocity (obtained through posi-

tion first-order differentiation) recorded using Matlab (Math-

works). The processing was performed offline but in real-

time conditions where the gaze model was used to predict

the most likely target before movement onset via a simulation

designed using Python programming language.

B. Results

1) Prediction accuracy: Figure 2 presents the distribution

of the prediction accuracy in both conditions for all subjects.

On average, the model predicted the correct target in 60%

and 73% of the cases, respectively, for the Free choice and

Constrained choice conditions. The results are promising but

not as accurate as what some others report. For example [6]

report accuracies of around 85% in a situation where the

targets were imposed (similar to the Constrained choice

condition) but also constantly visually presented and using a

head-mounted eye-tracker. Not surprisingly, prediction errors

were spatially driven, with wrong predictions concentrated

around the middle target, as shown in Figure 3.
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Fig. 3. Confusion matrix of the predictions.
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Fig. 4. Distribution of predictions (true vs false) against distance at onset
(t = to). Distance is expressed as a percentage of total reaching distance.
Each color/symbol depicts a different subject.

2) Active selection impact: Prediction accuracies pre-

sented in Figure 2 show that the model better represents

the Constrained choice condition in which subjects have to

find and aim for a given target. This is aligned with the

model’s intention to capture subjects attention to a target.

It is also expected to be more representative of a game-

driven rehabilitation scenario than the presentation of three

equivalent targets. The gameplay is likely to provide possible

movements with different interests or attraction to the user

who has to perform an active choice.

In the current experimental setup, it also likely that

subjects did not perform any scanning of the target or

active selection in the first scenario (Free choice) but instead

performed a reflex movement towards the screen as soon as

the targets appeared.

3) Impact of definition of movement onset: As the model

uses a velocity threshold to define the movement onset and

that the reaching pace is not imposed on the subjects, the

onset time — and hand distance — is variable from one

subject to another and even from one reaching cycle to

another. Figure 4 shows the impact of the onset distance

(as a percentage of reaching total reaching distance) on the

model prediction. We see that a prediction happening later

on the movement does not favour a higher accuracy, as it

could be intuitively suspected. This suggests that a relatively

low-velocity threshold and so an early prediction is viable in

this setting.

4) Impact of λ: We performed a sensitivity analysis of

λ and show the results in Figure 5. Results suggest no



Fig. 5. Sensitivity analysis of λ.

significant difference in prediction accuracy. With different

λ values, accuracy (%) for Constrained choices ranged from

58.3 to 73.3, and 50.8 to 62.5 for Free choices.

It is also clearly visible from Figure 5 that the performance

is slightly lower for λ = 0 and λ = 1. For these values, which

correspond to considering only the number of fixations or

only the duration of fixations, the prediction scores are closer

for both conditions (Constrained and Free). This suggests

that an appropriate balance between fixations counts and time

helps capturing the actual subjects’ attention.

IV. DISCUSSION AND CONCLUSION

This paper investigated a model that combined gaze and

movement initiation information to detect the user intention

in reaching actions during interaction with a robotic device.

Our long-term goal is to develop a Movement Intention

Model that separates the spatial and temporal components

to offer a more natural interaction. The goal is to empower

patients with the agency to decide the movement onset.

The prediction accuracy obtained in our experiment in

this paper is not yet sufficient for implementation in a

neuro-rehabilitation scenario. Nevertheless, the simple model

achieved a 2.5 times better prediction than a random choice

and showed promise in its possible generalisation with

subjects with neurological injuries, compared to a grey-box

model including movement direction information used in [2].

Using a head-mounted eye tracker and monitoring fixa-

tions to and from the subject’s hand could also lead to more

satisfying prediction accuracy; the glances at the hand could

be used to indicate when the subject is ready to move. It

could be easily coupled to a very similar model, but the

practical cost remains critical in the application.

Our next steps are to first conduct more studies to under-

stand the full spectrum of gaze behaviours in our context,

e.g. including saccadic behaviours and pupillary activity

[14], and what information these behaviours provide us in

determining which target a person has decided to reach.

Moreover, the difference in accuracy between free choice and

constrained choice conditions suggests that for gaze-based

intention recognition to work, gaze must be explicitly and

actively involved during intention formation. For example,

more complex game-like tasks may engage participants better

in terms of using their gaze.

Furthermore, our proposed model directly relies on the

subject’s attention to the target to be reached. We can expect

that better predictions could be obtained in actual conditions

with neurologically impaired subjects due to a higher focus

on the task than the current experimental setup.

Finally, it is expected that such a model can be extended

to more complex movements and path planning. While the

current experiment focused on a prediction before movement

onset, the model can be applied over a continuous-time (in

a windowed fashioned) to predict directions and re-planning

changes. This would allow for more realistic scenarios, in-

cluding multi-stage movement and functional tasks practice,

which are currently lacking in robot-assisted rehabilitation.
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